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Although elemental hydrogen is the cleanest and most cost- Table 1.

Enantioselective Hydrogen-Mediated Reductive

effective reductant available, the capture of organometallic speciesCYclization of 1,6-Enynes 1a—12a Catalyzed by Rhodium?

generated via hydrogenation has, until recently, only been achieved
through migratory insertion of carbon monoxide (alkene hydro-

X

formylation and the FischefTropsch reactions).The principal Y¥\\;
R

challenge posed by hydrogen-mediated-@ bond formation
involves partitioning of conventional hydrogenation and reductive
coupling manifolds. Initial studies from our lab on hydrogen-
mediated reductive aldol coupling demonstrate that conventional
hydrogenation pathways are suppressed through the use of cationic
rhodium precatalysts and mild basic additives. Such conditions are
believed to induce heterolytic hydrogen activatfgrBubsequently
developed reductive couplings afketo aldehydes to 1,3-dienes,
1,3-enynes, and 1,3-diynes retain the requirement of a cationic
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rhodium precatalyst, yet proceed in the absence of basic additives,
suggesting heterolytic hydrogen activation may not be operative.

In connection with our studies on hydrogen-mediateddbond
formation} an enantioselective variant of the hydrogen-mediated
reductive cyclization of 1,6-enynes was sought. While enantiose-
lective cycloisomerizations and hydrosilylative cyclizations of 1,6-
enynes are known, simple enantioselective reductive cyclizations
have not been describéd’ Here, we report that asymmetric
hydrogenation of 1,6-enynes at ambient temperature and pressure
using chirally modified rhodium catalysts promotes highly enan-
tioselective reductive cyclization to afford a diverse range of
alkylidene-substituted carbocycles and heterocycles with complete
atom economy. Related hydrogetieuterium crossover experiments
suggest oxidative cyclization to form a metallocyclic intermediate
occurs in advance of hydrogen activation.

Initial studies focused on the enantioselective reductive cycliza-
tion of 1,6-enynela. Gratifyingly, hydrogenation ofaat ambient
pressure and temperature using Rh(C@D) (5 mol %) as
precatalyst andR)-BINAP (5 mol %) as a chiral inducing element
gave the desired reductive cyclization prodiicin 69% yield and
94% ee. These reaction conditions proved to be applicable across
a structurally diverse set of 1,6-enynga—12a Interestingly, a 10b
striking dependence of chemical yield and enantiomeric excess upon
the structural features of the chiral phosphine ligand is observed;
while la—6a and 9a—12a cyclize in good yield and excellent
enantiomeric excess using)¢(Cl,OMe-BIPHEP andR)-BINAP,
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(R-PHANEPHOS delivers a complex distribution of conventional
hydrogenation products, yeRf-PHANEPHOS is unique in its

a8 Procedure: To a solution of enyrda (100 mol %) in DCE or DCM
(0.1 M) at 25°C were added rhodium catalyst and ligand. In the case of

ability to promote highly enantioselective cycloreduction of enynes Substratesla—5a and 9a-12a 5 mol % of catalyst and ligand was

7a—8a.
Reductive cyclization productsb—12b incorporate twanonex-

employed. In the case of substra6es-8a, 3 mol % of catalyst and ligand
was employed. The system was purged with(§), and the reaction was
allowed to stir under 1 atm of H(g) until complete consumption dfa

changeablénydrogen atoms. Homolytic and heterolytic hydrogen Was observed (23 h), at which point the reaction mixture was evaporated

activation pathways may now be discriminated on the basis of

onto silica gel and the product purified by silica gel chromatography.

hydrogen-deuterium crossover experiments. Reductive cyclization atmosphere of DH does not provide crossover products, in

of 13a under a mixed atmosphere of,knd D, or under an
6174 w J. AM. CHEM. SOC. 2005, 127, 6174—6175

accordance with homolytic hydrogen activation. Exposuré 4zt
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a(Top) Reductive cyclization of3a under a mixed atmosphere of;tand D» or under an atmosphere of DH does not provide crossover products.
(Bottom) Exposure ofl4a and 15ato identical conditions under a atmosphere provides cycloisomerization produets and 15¢ without deuterium
incorporation, even at stoichiometric catalyst loadings, thus suggesting hydrometallative pathways enlécntbl5c are not operative.

or 15ato identical conditions under aDatmosphere does not  Johnson, and Merck. Dr. Ulrich Scholz of Bayer Chemicals is
induce reductive cyclization. Rather, cycloisomerization products thanked for the generous donation &)+Cl,OMe-BIPHEP. Our
14c and 15c are formed. A hydrometallative mechanism for  reviewers are thanked for helpful comments.

cycloisomerization would be initiated by,@xidative addition and
propagated by rhodium hydrides derived ugehydride elimination
from intermediateA. Deuterium incorporation should occur in the
first turnover of the catalytic cycle, yet deuterium incorporation is
not observed, even at stoichiometric catalyst loadings. The extent
of deuterium incorporation fat3b—e, 14¢ and15cis established

by ESHMS analysis with isotopic correction and is corroborated (1) For catalytic G-C bond-forming hydrogenations developed in our lab,
by 1 Iy . h p see: Jang, H.-Y.; Krische, M. Acc. Chem. Re004 37, 653.

yH NMR analysis (Sc eme_ 1). . ) o (2) For a review covering heterolytic hydrogen activation, see: Brothers, P.
Acquisition of 14c and 15c without deuterium incorporation is J. Prog. Inorg. Chem1981, 28, 1.

; ; ; ; f f (3) Mild basic additives are believed to induce heterolytic activation of
inconsistent with a hydrometallative mechanism. This fact, along hydrogen via deprotonation of cationic rhodium dihydride intermediates:

Supporting Information Available: Spectral data for new com-
pounds, absolute stereochemical assignments, andMESidata. This
material is available free of charge via the Internet at http://pubs.acs.org.
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